
A Computational Framework for
Identifiability and Ill-Conditioning Analysis

of Lithium-Ion Battery Models∗
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Abstract

Recovering kinetic, transport, and thermodynamic parameters is a key task in the development
of battery models. This task is complicated because of the lack of informative experimental data
and because of the complexity of the associated partial differential equation models. We present
a computational framework that combines a variety of techniques to investigate the effects that
different sources of experimental information on parameter identifiability and on structural ill-
conditioning. We analyze the electrochemical isothermal Lithium-ion model developed and vali-
dated by Doyle et al. which consists of a lithiated-carbon anode (LixC6), a polymer electrolyte, and
a lithium-manganese-oxide cathode (LiyMn2O4). We use our framework to guide the selection of
experimental information. We demonstrate that the use of voltage discharge information enables
the identification of a small parameter subset, regardless of the number of experiments consid-
ered. We also demonstrate that the use of electrolyte concentration information significantly aids
identifiability and mitigates ill-conditioning.
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1 Introduction

There is significant interest in developing accurate Lithium-Ion (Li-Ion) battery models to perform
systems design and real-time control tasks. For a review on the topic the reader is referred to [39, 18].
The development of methods for parameter estimation and structural model analysis is important
because in can enable improved understanding of the physical system, it can better guide collection
of experimental data, and it can ultimately enhance model predictability [43, 15, 16, 18, 24, 41, 42].
Estimating parameters and analyzing Li-ion models is challenging because of the complexity of the
governing equations, their natural overparameterization, and the lack of informative experimental
data [18]. This is particularly true in rigorous electrochemical-based models such as those derived
from porous electrode and concentrated solution theories [11, 19, 12] which are described by complex
nonlinear and coupled sets of partial differential and algebraic equations (PDAEs).

Estimation techniques characterize the performance of parameter estimates by analyzing confi-
dence levels. Santhanagopalan et al., [40] use sensitivity analysis to guide such an analysis while
Ramadesigan et al., [38] use Markov Chain Monte Carlo to have a more accurate description of the
posterior distribution. Identifiability and ill-conditioning analysis techniques study the model struc-
ture by using rank analysis of the Fisher-information matrix [1, 17, 47] and of the parameter-output
sensitivity matrix [1, 2, 17, 30]. These techniques have been developed and applied in many fields
such as chemical reactors [21, 35, 44, 50, 51], bioprocesses [6, 30, 29, 49], and biochemical networks
[8, 10]. In the context of Li-ion batteries they have been applied to models of different complexity that
span linear and nonlinear equivalent-circuit models [42, 24] to rigorous models [15, 16, 41]. These
studies address identifiability and ill-conditioning from different angles: some studies seek to reduce
the model and restrict the parameter space [24], some studies seek to detect unidentifiable parame-
ters using variance information [41], and some other studies seek to detect unidentifiable parameters
using rank and eigenvalue analysis [42, 15, 16].

Few studies analyze connections between estimator performance and model structure. This is
important because structural model issues can significantly distort conclusions obtained with tradi-
tional estimation studies. For instance, the studies in [15, 42] note the influence of small eigenvalues
of the Fisher-information matrix on parameter variances but no in-depth study is performed. In
[39] the authors note significant ill-conditioning of the Jacobian of the differential algebraic equa-
tion (DAE) system resulting from discretization of the PDAEs but do not analyze the effect of such
ill-conditioning on parameter estimates. In [42] the authors study a nonlinear equivalent-circuit
model and recognize the inaccuracies of approximating the parameter covariance matrix using an
ill-conditioned Fisher-information matrix. Some studies have also proposed to monitor the eigen-
values of the Hessian matrix of the estimation problem to diagnose identifiability issues but do not
analyze specific sources of the ill-conditioning [53, 31].

Identifiability and ill-conditioning analysis can also aid selection of appropriate experimental in-
formation. In the context of Li-Ion batteries, Schmidt et al., [41] note that identifiability was improved
when multiple voltage discharge curves were used for estimation but such information did not make
the entire parameter set identifiable. The authors do not provide an explanation for this. Although
the idea of including more experimental information is fairly intuitive, there are currently no frame-
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works that enable a systematic assessment and diagnosis of ill-conditioning and identifiability issues
in Li-ion battery models and that can better guide experimental data collection.

In this work we present a computational framework to perform estimation, ill-conditioning,
and identifiability analysis of Li-Ion batteries. To illustrate the capabilities of our framework, we
use the electrochemical isothermal Li-ion model originally proposed and validated by Doyle et al.
[11, 19, 12]. The Li-ion battery analyzed consists of a lithiated-carbon anode (LixC6), a polymer elec-
trolyte, and a lithium-manganese-oxide-spinel cathode (LiyMn2O4). We evaluate estimator perfor-
mance using approximate covariance matrices obtained from the parameter-output sensitivity matrix
and Monte Carlo simulations. We use singular value decomposition (SVD) of the parameter-output
sensitivity matrix to diagnose and determine the sources of ill-conditioning and we use a variance-
decomposition technique that determines the influence of small singular values on specific parame-
ters. We perform QR and SVD decompositions to rank and determine identifiable and unidentifiable
parameters. We also use dynamic sensitivity profiles to assess the excitation provided by different
parameters on different outputs. We illustrate how to combine all of these techniques to assess the
impact of different sources of experimental information and we demonstrate that the use of voltage
profiles is only sufficient to estimate a small parameter subset. We then demonstrate that a single
measurement of electrolyte concentration is sufficient to determine a much larger parameter subset
that includes all the parameters under study except one. Sensitivity profiles indicate that this last
parameter does not sufficiently excite the model outputs.

The paper is organized as follows. We first present the different components of the computa-
tional framework to evaluate estimator performance, ill-conditioning, and identifiability of nonlinear
models by using sensitivity and Monte Carlo methods. We then give an overview of the governing
equations of the Li-ion model of Doyle et al. [11, 19, 12]. We then present a case study to illustrate the
use of our framework. We conclude by summarize our findings and providing directions for future
work.

2 Computational Framework

In this section we describe the different techniques of the computational framework. The combi-
nation of these techniques will enable us to assess estimator performance as well as to perform ill-
conditioning and identifiability analysis. We start with basic notation and then discuss two major
paradigms used for analysis: I) Numerical techniques that perform singular value analysis of the so-
called sensitivity matrix and II) Statistical techniques based on Monte Carlo simulations to estimate
the parameter covariance matrix and quantify uncertainty. For each paradigm, we provide different
methods to diagnose ill-conditioning and identifiability issues.
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2.1 Definitions and Notation

We assume a dynamic model is described by the differential and algebraic equation (DAE) system,

ẋ(t) = f(x(t), z(t), u(t), θ) (2.1a)

0 = g(x(t), z(t), u(t), θ) (2.1b)

y(t) = h(x(t), z(t)) (2.1c)

x(t0) = x0, (2.1d)

where t ∈ < is the independent time variable, x(t) ∈ <Nx and z(t) ∈ <Nz are the differential and
algebraic state variables, respectively; u(t) ∈ <Nu are the time-varying input signals (i.e., experiment
design vector or controls), and θ ∈ <Nθ is the unknown parameter vector. The differential f(·) :

×<Nx ×<Nz ×<Nu ×<Nθ → <Nx and algebraic g(·) : <Nx ×<Nz ×<Nu ×<Nθ → <Nx mappings are
assumed to be twice continuously differentiable in all their arguments. The initial conditions of the
DAE system (2.1a)-(2.1b) are denoted by (x0, z0) and we say that these are consistent if they satisfy
0 = g(x0, z0, u0, θ) for fixed u0 and θ.

We consider a vector of response variables y(t) ∈ <Ny given by the mapping h(·) : <Nx × <Nz →
<Ny (2.1c) which we also assume to be twice continuously differentiable. We denote the i-th entry of
vector y(·) as y(i)(·). We establish a set of time measurement points T = {t1, . . . , tNm} and a set of
experiments E := {ξ1, ..., ξNe}. Each experiment ξ ∈ E has a corresponding input signal uξ ∈ <Ne and
responses yξ(uξ, θ, t) ∈ <Ny , t ∈ T , ξ ∈ E . The inputs are collected in the vector u := (uξ1 , ..., uξNe)

and the model responses are collected in the vector

Y (u, θ) := (yξ1(uξ1 , θ, t1), . . . , yξ1(uξ1 , θ, tNm), . . . , yξNe(uξNe , θ, t1) . . . , yξNe(uξNe , θ, tNm)) ∈ <Ny ·Nm·Ne .

(2.2)

We define the corresponding set of observed (measured) response vector as Ȳ ∈ <Ny ·Nm·Ne . We use
θ̂ ∈ <Nθ to denote the model parameter vector estimated from the observed data Ȳ . We assume that
this is obtained by solving the maximum likelihood problem [2],

θ̂ := arg min
θ

Φ (u, θ) (2.3)

where,

Φ(u, θ) :=
1

2
(Y (u, θ)− Ȳ )TC−1

y (Y (u, θ)− Ȳ ). (2.4)

The true value of the parameter vector is denoted as θ∗ ∈ <Nθ . We assume output measurement errors
that are uncorrelated among outputs and experiments. This implies that ȳ(i)ξ (t) = y

(i)
ξ (uξ, θ

∗, t) + ε(i)

where ε(i) ∼ N (0, σ
(i)
y ) for i = 1, . . . , Ny, t ∈ T , and ξ ∈ E . Under these assumptions the measurement

covariance matrix Cy ∈ <Ny ·Nm·Ne×Ny ·Nm·Ne is diagonal with entries given by the variances (σy
(i))2.

We also define Σy := C
1/2
y ∈ <Ny ·Nm·Ne×Ny ·Nm·Ne as the measurement standard deviation matrix

which implies that Y (u, θ) ∼ N (Ȳ ,Σy). Finally, we define the parameter covariance matrix,

C := E
[
(θ̂ − θ∗)(θ̂ − θ∗)T

]
, (2.5)
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where the expectation E[·] is taken with respect to the distribution N (Ȳ ,Σy) [2].
We also define the parameter-output sensitivity matrix

S := ∇θY (u, θ̂) ∈ <Ny ·Nm·Ne×Nθ , (2.6)

and the Fisher-Information matrix,

F := STC−1
y S ∈ <Nθ×Nθ . (2.7)

2.2 Analysis Paradigms

We now describe two paradigms to analyze estimated parameters and identify structural issues. The
first paradigm uses sensitivity information to form the Fisher-information matrix which in turn can
be used to approximate the parameter covariance matrix. The second paradigm approximates the
covariance matrix via Monte Carlo.

2.2.1 Sensitivity Method

We solve the parameter estimation problem (2.3) to obtain the parameter estimate θ̂, the sensitivity
matrix S, and the Fisher-information matrix. We compute an approximate covariance matrix C using
the inverse of the Fisher matrix which is in turn obtained from S. The sensitivity-based method is
straightforward to implement and provides fast local information of the model behavior around the
parameter estimates. Sensitivity information can also be used in conjunction with singular value
decomposition to perform structural model analysis. Because of its inherent local nature, however,
the covariance matrix obtained from sensitivity might not provide a good covariance approximation
(specially true when S is ill-conditioned). Consequently, this method is most useful for qualitative
analysis.

2.2.2 Monte Carlo Method

In this setting we obtain L replications of the observations Ȳj , j = 1, ..., L obtained by sampling
N (Ȳ ,Σy). For each observation Ȳj we solve problem (2.3) to obtain the estimates θ̂1, · · · , θ̂L. This
information is used to compute the approximate covariance matrix C and confidence intervals of
each parameter. The replications can also be interpreted as perturbations on the data that can help
us to assess the stability of the estimates. When the true parameter θ∗ is known (as in theoretical
studies) we can also assess the accuracy of the estimator by computing the bias and the empirical
mean squared error of the estimate. The Monte Carlo approach enables a more quantitative analysis
but it is computationally demanding.

2.3 Estimator Analysis

To assess the performance of an estimator we can use precision or accuracy arguments which we now
describe.
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2.3.1 Estimator Precision

The precision of the estimator θ̂ can be assessed by using an approximate covariance matrix C [2, 14,
27, 49]. This is a matrix whose (i, j)-element σ2ij is the variance of the i-th parameter θ̂(i) with respect
to the j-th parameter θ̂(j) for i, j = 1, · · · , Nθ. The diagonal element σ2jj is the variance of the j-th
parameter θ̂(j). With the results of C we calculate the confidence interval for each parameter. Our
framework considers two strategies to compute the covariance matrix.

Covariance Based on Sensitivity Matrix. In this approach, the covariance matrix C is approxi-
mated by the inverse of the Fisher-information matrix which we denote as F ,

C ≈ F−1 =
(
STC−1

y S
)−1

. (2.8)

The Fisher-information matrix F can only be guaranteed to be positive definite when the sensitivity
matrix S is full-rank [36]. The relationship between the Fisher matrix and the covariance matrix
is derived by applying a first-order Taylor expansion of the maximum likelihood function around
θ̂, assuming a Gauss-Newton approximation of the Hessian matrix, and by using the Cramer-Rao
bound [2, 14, 27]. The Fisher matrix is also known as the average estimated covariance matrix [2].
The sensitivity matrix S can be computed either by finite differences or by integrating the system
model along with the so-called sensitivity equations [3, 32, 45].

In the definition of C given in (2.8), we require matrix and inverse operations with the sensitivity
matrix S. These computations could lead to significant numerical errors when the sensitivity matrix
is not full-rank (i.e., it is ill-conditioned). This ill-conditioning introduces degeneracies to the eigen-
system of C which in turn reflects in large parameter variances [29]. To deal with this issue, we can
directly compute C based on a singular value decomposition (SVD) of the sensitivity matrix S where
S is scaled as S ← Σ−1

y S. SVD gives a decomposition of the form

S = USvV
T =

Nθ∑
i=1

uiςiv
T
i (2.9)

where U ∈ <Ny ·Nm·Ne×p and V ∈ <Nθ×p are orthogonal matrices with p = min{Ny ·Nm ·Ne, Nθ} (we
assume the typical situation in which p = Nθ). Matrix Sv := diag(ς1, · · · , ςp) is the singular value
matrix and ςi is i-th singular value of S. The set of singular values of S is known as the singular value
spectrum (SVs). We assume the SVs to be ordered as ς1 ≥ · · · ≥ ςNθ ≥ 0. The ratio of the largest and
smallest singular values of S is the condition number κ(S). The inverse of the smallest singular value
of S is the collinearity index γ(S). When one or more of the singular values approaches zero we say
that the matrix S is not numerically of full-rank. The vectors ui ∈ <Ny ·Nm·Ne and vi ∈ <Nθ are the left
and right singular vectors of S. Matrix C in (2.8) can be computed as

C =

Nθ∑
i=1

viv
T
i

ς2i
(2.10)

The parameter variance σ2jj of the j-th parameter of θ̂ can be computed as

σ2jj =

Nθ∑
i=1

v
(j)
i · v

(j)
i

ς2i
(2.11)
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where v(j)i is the j-th entry of vi for k = 1, . . . , Nθ. Note that multiple singular values can contribute to
the variance of parameter j. Moreover, the variances increase as the singular values decrease and this
establishes a connection between structural ill-conditioning and estimator performance. The SVD
decomposition approach is numerically more stable than the direct computation (2.8), particularly
when S is ill-conditioned.

Covariance Based on Monte Carlo. We compute C using the estimates θ̂j , j = 1, ..., L as

C =
1

(L− 1)

L∑
j=1

(θ̂j − E[θ̂])(θ̂j − E[θ̂])T (2.12)

where E[θ̂] is approximated using the sample average

E[θ̂] ≈ 1

L

L∑
j=1

θ̂j . (2.13)

This statistical approach can better capture the effect of nonlinearities on the posterior distribution of
the parameters but does not provide much insight on specific sources of identifiability issues.

Confidence Intervals. The confidence interval of the j-th parameter is given by θ(j)L ≤ θ̂(j) ≤ θ
(j)
U

and this describes a range of values within which one can be confident that the corresponding true
parameter (θ∗)(j) lies. The limits θ(j)L and θ(j)U are computed as

θ
(j)
L = θ̂(j) − (σjj)tα/2,Ny ·Nm·Ne−Nθ (2.14a)

θ
(j)
U = θ̂(j) + (σjj)tα/2,Ny ·Nm·Ne−Nθ . (2.14b)

Here, tα/2,Ny ·Nm·Ne−Nθ is the critical value of the Student’s t-distribution for the given confidence level
α and Ny ·Nm ·Ne−Nθ are the degrees of freedom; σjj is the standard deviation of θ̂(j) computed as
the squared root of the j-th diagonal element of C. In the sensitivity approach θ̂(j) is the parameter
estimate value, while in the Monte Carlo approach, we use the sample average (2.13). We also define
the confidence length θ(j)U − θ

(j)
L and we note that it is often convenient to express this length relative

to the estimated value as 100 · (θ(j)U − θ
(j)
L )/θ̂(j).

2.3.2 Estimator Accuracy

Accuracy of a parameter estimate is often evaluated using the bias,

β(θ̂) = E[θ̂]− θ∗. (2.15)

The bias quantifies the difference to be expected between an estimator and the true or reference value.
An estimator based on a finite sample, however, can additionally be expected to differ from the true
parameter due to the randomness in the sample. One measure that is used to reflect these two effects
is the mean square error (MSE),

MSE =
∥∥∥β(θ̂)

∥∥∥2 + Tr[V ar(θ̂)]. (2.16)
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The first term on the right-hand side is the squared norm of the bias and the second term is the trace
of the variance. The variance arises from the variability generated by measurement errors. We can
approximate the variance as Tr[V ar(θ̂)] ≈ Tr[C] = sum(diag(C)) [23, 33]. Consequently, an ideal
estimator seeks to minimize the variance of the parameter estimates and the bias. In fact, the trace
of the variance Tr[V ar(θ̂)] is the A-optimality criterion used in optimal experimental design [36]. We
highlight that our maximum likelihood problem does not use prior information because this would
introduce an additional bias to our estimates. We also avoid the use of prior information to assess
identifiability issues in a more systematic manner.

2.4 Structural Analysis

The previous techniques seek to analyze estimator performance by computing parameter variances,
confidence intervals, biases, and MSEs. Such techniques by themselves, however, do not identify
sources of ill-conditioning resulting from structural deficiencies of the parameter covariance and
Fisher matrices [1, 10, 17, 26, 44, 47]. Our objective in this section is to exploit the connection be-
tween the eigenvalues of F and C with the singular values of the sensitivity matrix S to identify
the presence and sources of ill-conditioning [28]. The rationale is that, if certain parameters of θ̂ are
unidentifiable, some columns of the sensitivity matrix S are linearly dependent (i.e., S is not of full-
rank) which implies that F and C are singular or nearly singular [10, 25, 29, 44]. Columns of S that
are nearly linear dependent are a typical source of poor estimator performance [5, 29]. We thus try
to identify if S is ill-conditioned by computing its rank and collinearity index, we determine which
columns of S are dependent, and we analyze how small singular values influence parameter vari-
ances. We do this by analyzing matrix C and by analyzing S using SVD and QR decompositions.
These procedures ultimately result in parameter rankings that we use to determine unidentifiable pa-
rameters under different sources of experimental information. These rankings can be used to provide
recommendations for regularization and design of priors [29].

2.4.1 Ill-Conditioning Analysis

We follow the procedure for linear estimation presented by Belsley [5] and modified for nonlinear
models in [29]. The procedure is summarized as follows:

1. Perform SVD of S to obtain SVs {ς1, · · · , ςNθ}.

2. Compute the condition number κ(S) = ς1/ςNθ and collinearity index γ(S) = 1/ςNθ .

3. Check if κ(S) and γ(S) satisfy κ(S) ≤ κmax or γ(S) ≤ γmax. Empirical thresholds of κmax =

1000 and γmax = 15 are typically used [21, 6, 30, 29]. If false, we say that S is ill-conditioned.

4. Analyze ill-conditioning of S (i.e., rank-deficiency or ill-determined rank class). A rank-deficient
S has a large gap between large and small singular values limited by a ε-threshold. An ill-
determined rank problem has SVs gradually decaying to zero without a gap between singular
values. The ε-threshold (the lowest bound on the SVs), is defined as ε = max {ς1/κmax, 1/γmax}.
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Singular values above the ε-threshold are said to be well-conditioned and those below are said
to be ill-conditioned. The number well-conditioned singular values reveals the numerical rank
rε of S, which ideally should be Nθ.

We highlight that the above approach relies on the definition of the thresholds κmax, γmax, which
are a subjective choice. This procedure, however, provides a quantitative approach to perform com-
parisons among different estimators and thus evaluate the impact of different sources of information.

2.4.2 Identifiability Analysis

We now discuss techniques to detect unidentifiable parameters based on parameter variances, based
on SVD of the sensitivity matrix S, and based on QR decompositions of sensitivity matrix S (also
called parameter subset selection or orthogonalization method). Each technique constructs an iden-
tifiable ranking list based on different metrics. We also connect identifiability techniques with the
structural ill-conditioning techniques previously discussed.

Variance Method. We can define identifiable parameters as those with variances within some given
ranges [48]. We use the following simple procedure:

1. Compute C either from the Fisher-information as shown in (2.8) or (2.10) or from Monte Carlo
as shown in (2.12). Take the diagonal elements of C as variances σ2jj for each parameter with
j = 1, · · · , Nθ. Rank parameters in θ̂ by ascending order according to parameter variances.

2. Define the maximum variance ρmax. Parameters above the threshold (i.e., σ2jj > ρ) are consid-
ered unidentifiable.

SVD Method. As seen in the SVD analysis of Section 2.4.1 and in the variance-decomposition in
(2.11), small (ill-conditioned) singular values inflate parameter variances. We can rank parameters
by identifying singular values of S instead of variances. The following procedure relies on a variance-
decomposition that quantifies the contribution of each singular value to the variance of each param-
eter. To perform this decomposition, the variance σ2jj of the j-th parameter θ̂(j) is obtained according

to (2.11). For each parameter j, we compute the proportions πi,j =
[
v
(j)
i · v

(j)
i /ς2i

]
/σ2jj of the contri-

butions of each ill-conditioned singular value ςi, i = rε + 1 to the variance σ2jj . The rationale behind
this ranking is that ill-conditioned singular values have large contributions to parameters with large variance.
In other words, a parameter that is strongly influenced by ill-conditioned singular values provides
evidence of identifiability issues. The procedure is:

1. Compute C from SVD according to (2.10) and obtain variances σ2jj for j = 1, · · · , Nθ. Perform
procedure of Section 2.4.1 to obtain the ill-conditioned singular values ςi, i = rε + 1 and the
numerical rank rε.

2. Compute the variance-decomposition proportion πi,j , i = rε + 1 for each parameter j.

9



3. Rank parameters of θ̂ by ascending ordering according to the sum of their proportions
∑Nθ

i=rε+1 πi,j .
Parameters on the top of the list are not strongly influenced by ill-conditioned singular values.

4. Define the maximum proportion threshold πmax (typically set to 0.5). The identifiable parame-
ters are those satisfying

∑Nθ
i=rε+1 πi,j ≤ πmax. If rε = Nθ then all parameters are identifiable.

QR Method. This method selects the subset of linearly independent parameters based on orthogo-
nal projections of the columns of S [26, 30, 29]. This method is also called parameter subset selection
and is a popular way of determining unidentifiable parameters. Other studies dedicated to parame-
ter subset selection can be found in [6, 7, 8, 9, 20, 30, 35, 46, 50, 51]. The rationale behind this ranking
is that the unidentifiable parameters are expected to have the largest variance among the whole pa-
rameter vector and this can be detected by identifying the linearly dependent columns of S. The procedure
is:

1. Perform procedure of Section 2.4.1 to obtain the numerical rank rε. The dimension of the iden-
tifiable parameter subset is rε.

2. Apply a QR decomposition with pivoting (QRP) to S to obtain S · Π = Q · R where Π is a per-
mutation matrix. This matrix reorders the columns of S according to their linear dependence.

3. Build the identifiable ranking list θ̃ = ΠT θ̂.

4. Select the unidentifiable parameters as the last (Nθ − rε) entries of ordered θ̃.

3 Li-ion Battery Model

The Li-ion battery model under study is that proposed by Doyle et al. [11] and was experimentally
validated by Doyle et al. in [12]. The Li-ion cell sandwich in Figure 1 consists of a lithiated carbon
anode (LixC6), a polymer electrolyte, and a lithium-manganese-oxide-spinel cathode (LiyMn2O4).
The active material in the composite electrodes is assumed to be made up of spherical particles and
supported on an inert material. The polymer electrolyte in the separator uses a LiPF6 salt in a non-
aqueous liquid mixture of ethylene carbonate and dimethyl carbonate with a random co-polymer
matrix of vinylidene fluoride and hexafluoropropylene. The lithium ions (Li+) travel through the
electrolyte from one porous electrode to the other whereas the electrons travel through an external
closed circuit. The Li+ ions react and diffuse in the electrodes towards the inner regions of metal
oxide active material particles (the solid phase). The discharge process takes place when Li+ ions
diffuse from the anode to the cathode.

The governing equations presented in [11, 12] are based on the porous electrode and concentrated
electrolyte theories. These equations consist of mass transport balances in the electrolyte including
migration, diffusion, and reaction; Ohm’s law in the electrolyte which includes the diffusion potential
and the variation of the electrolyte resistivity with concentration; Fick’s laws in the solid active ma-
terial which assumes a constant solid diffusion coefficient; Ohm’s law in the solid electrode matrix;
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Figure 1: Li-ion cell during discharge process. Cell consists of a LixC6 negative electrode, a
LiyMn2O4 positive electrode, and a separator with LiPF6 salt-based electrolyte.

Butler-Volmer kinetics; and current conservation. Radial diffusion is considered to be the transport
mechanism of Li+ ions into the spherical particles in the electrodes.

The space-time model is comprised of a set of highly complex partial differential and algebraic
equations. Strategies to simplify the model are discussed in [37]. We use the subscripts a, s, and
c to denote anode, separator, and cathode regions, respectively. The subscripts e and s denote the
electrolyte and solid phases, respectively. Three independent variables (axial coordinate x, radial
coordinate r and time t) are considered. The model includes twenty dependent variables (states)
summarized in Table 1 and given by,

• The electrolyte concentration ce,k(x, t), electrolyte potential Φe,k(x, t), and local current density
ik(x, t) in all regions k = {a, s, c}.

• The solid concentration cs,k(x, r, t), solid potential Φs,k(x, t), and reaction rate jn,k(x, t) in the
electrodes k = {a, c}.

• The conductivity of the electrolyte κ0,k(x, t) in all regions k = {a, s, c}.

• The open-circuit potential Uk(x, t) in the electrodes k = {a, c}.

The kinetic and transport parameters to be estimated are presented in Table 2. There are the Li+

diffusion coefficient in the solid particle of the anode Ds,a, the Li+ diffusion coefficient in the solid
particle of the cathode Ds,c, the salt diffusion coefficient in the electrolyte D, the reaction rate con-
stant in the anode ka, the reaction rate constant in the cathode kc, the Bruggman coefficient p, the
film resistance at the anode Rf , and the transport number t+. The design and operating variables,
constants and fixed parameters are summarized in Table 3.
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Table 1: Variables in Li-Ion Model.
Variable Description Unit Anode Separator Cathode

(k = a) (k = s) (k = c)

ce,k(x, t) Electrolyte concentration in region k mol m−3 X X X

Φe,k(x, t) Electrolyte-phase potential in region k V X X X

ik(x, t) Local current density in region k A m−2 X X X

cs,k(x, r, t) Concentration of Li+ on the intercalation particle
of electrode k

mol m−3 X - X

Φs,k(x, t) Solid-phase potential of electrode k V X - X

jn,k(x, t) Pore wall flux of Li+ on the intercalation particle
of electrode k

mol m−2 s−1 X - X

κ0,k(x, t) Ionic conductivity of the electrolyte in region k S cm−1 X X X

Uk(x, t) Open-circuit potential of electrode k V X - X

Table 2: Estimated parameters in Li-Ion Model.

Parameter Description Unit
Initial Guess True Value

θIG θ∗

Ds,a Li+ diffusion coefficient in the solid particle of anode m2 s−1 1.50× 10−13 1.00× 10−13

Ds,c Li+ diffusion coefficient in the solid particle of cathode m2 s−1 1.13× 10−10 7.50× 10−11

D Salt diffusion coefficient in the electrolyte m2 s−1 5.85× 10−14 3.90× 10−14

ka Reaction rate constant in the anode m2.5 mol−0.5 s−1 3.00× 10−11 2.00× 10−11

kc Reaction rate constant in the cathode m2.5 mol−0.5 s−1 3.00× 10−11 2.00× 10−11

p Bruggman coefficient - 2.25 1.5

Rf Film resistance at the anode Ω m2 0.135 0.090

t+ Transport number - 0.363 0.363

We have performed the following modifications to the model to aid computational performance:

• The local current density ik with k = {a, s, c} is eliminated at the electrodes and the elec-
trolyte by substituting Faraday’s equation in Ohm’s equation. With this simplification the
model reduces to seventeen dependent variables given by ce,a(x, t), ce,s(x, t), ce,c(x, t), Φe,a(x, t),
Φe,s(x, t), Φe,c(x, t), cs,a(x, r, t), cs,c(x, r, t), Φs,a(x, t), Φs,c(x, t), jn,a(x, t), jn,c(x, t), κ0,a(x, t), κ0,s(x, t),
κ0,c(x, t), Ua(x, t) and Uc(x, t).

• The three PDEs representing the electrolyte phase concentrations across the three regions (i.e.,
anode ce,a(x, t), separator ce,s(x, t) and cathode ce,c(x, t)) are approximated by a single PDE
with the axis dimension spanning x ∈ [0, L]. The new variable is called ce(x, t). The same sim-
plification is made for the electrolyte phase potentials (i.e., anode Φe,a(x, t), separator Φe,s(x, t)

and cathode Φe,c(x, t)). The new continuous variable is Φe(x, t). This reduces the system to thir-
teen dependent variables given by ce(x, t), Φe(x, t), cs,a(x, r, t), cs,c(x, r, t), Φs,a(x, t), Φs,c(x, t),
jn,a(x, t), jn,c(x, t), κ0,a(x, t), κ0,s(x, t), κ0,c(x, t), Ua(x, t) and Uc(x, t).

• We modify the boundary conditions for the potential of both electrodes and of the electrolyte.
Specifically, we set Φe(0, t) = Φe,0 and Φs,c(`a + `s, t) = Φs,c,0. We also introduce two additional

12



Table 3: Operating and design variables, constants and fixed parameters in Li-Ion Model.
Variable

/Parameter
Description Unit

Anode Separator Cathode

(k = a) (k = s) (k = c)

Operating variables

I Discharge current (1.0 C) A m−2 17.5
T Temperature K 298

Design variables

c
(0)
e Initial electrolyte concentration in region k mol m−3 2000
c
(0)
s,k Initial concentration of Li+ in electrode k mol m−3 14870 - 3900

Φe,0 Electrolyte potential at x = 0 V 0 - -
Φs,c,0 Electrode potential at x = `a + `s V - - 4.2
`k Thickness of region k µ m 100 52 174
εk Porosity of region k - 0.357 1 0.444
εf,k Volume fraction of fillers in region k - 0.172 - 0.259

Physical constants

F Faraday’s constant C mol−1 96487
R Ideal gas constant J mol−1 K−1 17.5

Kinetic and transport parameters

cs,k,max Max. concentration of Li+ in electrode k mol m−3 26390 - 22860
Rs,k Radius of active material in electrode k µ m 12.5 - 8.5
σk Electronic conductivity of electrode k S m−1 100 - 3.8

equations related to the integral form of Faraday’s law (see integral equations in Table 5). The
transformations are based on the fact that the current supplied by each portion of the anode
and cathode should add up to the total current I .

• We apply L’Hopital’s theorem to the Li-ion diffusion equation in the solid active material (de-
rived from Fick’s law) to avoid the indeterminate boundary condition at the sphere center
(r = 0). Consequently, an additional equation is introduced to represent the concentration
of Li+ ions in the solid-phase of the electrodes (cs,a(x, r, t) and cs,c(x, r, t)).

• We use a dimensionless model in the axial x and spherical coordinates r. Each region is nor-
malized according to its width. For instance, we define x∗ = x/`a and r∗ = r/Rs,a in the anode.

The complete set of equations of the modified model is presented in Tables 4 and 5. The PDAE
system is discretized in the axial and spatial coordinates to obtain a set of DAEs. We obtain consistent
initial conditions for this DAE system as follows. The algebraic equations of the discretized system
and those of the most interconnected variables are decoupled from the whole model t = 0 (i.e.,
jn,a(x, t), jn,c(x, t), Φs,a(x, t), Φs,c(x, t) and Φe(x, t)). Here, the electrolyte concentration functions
for κ0,k(ce(x, t)) with k = {a, s, c} and Uk(ce,k(x, t)) with k = {a, c} are also included. We solve these
equations by assuming all the concentrations equal to their initial values (ce(x, 0) = c

(0)
e , cs,a(x, r, 0) =

c
(0)
s,a and cs,c(x, r, 0) = c

(0)
s,c ). With this initial solution of the pore wall flux of Li+ ions (i.e., jn,a(x, 0) =

j
(0)
n,a, jn,c(x, 0) = j

(0)
n,c) and potentials (Φs,a(x, 0) = Φ

(0)
s,a, Φs,c(x, 0) = Φ

(0)
s,c and Φe(x, 0) = Φ

(0)
e ) we solve

the discretized PDEs for the concentrations (ce(x, t), cs,a(x, r, t), and cs,c(x, r, t)).
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Table 5: Auxiliary Equations of modified Li-ion PDAE model.
Region Auxiliary equation

Anode

σeff,a = σa ε
p
a

aa = 3
Rs,a

(1− εa − εf,a)

jn,a(x, t) = 2 ka (cs,a(x,Rs,a, t))
0.5 (ce,a(x, t))0.5(cs,a,max −

cs,a(x,Rs,a, t))
0.5sinh( 0.5F

RT
(Φs,a(x, t)− Φe,a(x, t)− Ua(x, t)− Fjn,a(x, t)Rf ))

Ua(x, t) = −0.16 + 1.32e
−3

cs,a(x,Rs,a,t)

cs,a,max + 10e
−2000

cs,a(x,Rs,a,t)

cs,a,max∫ `a

0

(Faa jn,a(x, t)|Φs,a=Φe,0)dx = I

Cathode

σeff,c = σc ε
p
c

ac = 3
Rs,c

(1− εc − εf,c)

jn,c(x, t) = 2 kc cs,c(x,Rs,c, t)
0.5ce,c(x, t)

0.5(cs,c,max −
cs,c(x,Rs,c, t))

0.5 sinh( 0.5F
RT

(Φs,c(x, t)− Φe,c(x, t)− Uc(x, t)))

Uc(x, t) = 4.198 + 0.0565 tanh(−14.554
cs,c(x,r,t)|r=Rs,c

cs,c,max
+ 8.609)−

0.0275

(
1

(0.9984−
cs,c(x,r,t)|r=Rs,c

cs,c,max
)0.492

− 1.901

)
− 0.157 e

−0.0473 (
cs,c(x,r,t)|r=Rs,c

cs,c,max
)8

+

0.8102 e
−40(

cs,c(x,r,t)|r=Rs,c
cs,c,max

−0.133)∫ `a+`s+`c

`a+`s

(Fac jn,c(x, t)|Φs,c=Φs,c,0)dx = −I

Anode/
Separator/
Cathode
k = {a, s, c}

Φe(x, t) = (Φe,a(x, t),Φe,s(x, t),Φe,c(x, t))

ce(x, t) = (ce,a(x, t), ce,s(x, t), ce,c(x, t))

jn(x, t) = (jn,a(x, t), 0, jn,c(x, t))

κeff (x, t) = (κeff,a(x, t), κeff,s(x, t), κeff,c(x, t))

κeff,k(x, t) = (1× 102 κ0,k(x, t))εpk

κ0,k(x, t) = 1.0793× 10−4 + 6.7461× 10−3(1× 10−3ce,k(x, t))− 5.2245× 10−3(1×
10−3ce,k(x, t))2 + 1.3605× 10−3(1× 10−3ce,k(x, t))3 − 1.1724× 10−4(1× 10−3ce,k(x, t))4

Deff = (Deff,a, Deff,s, Deff,c)

Deff,k = D εpk

ε = [εa, εs, εc]

l = [la, ls, lc]

a = [aa, 0, ac]
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4 Case Study

The PDAE system is discretized by the method of lines in the axial and radial dimensions. The result-
ing DAE system contains 561 equations. The differential and algebraic state variable vectors defined
in (2.1) are given by x = (ce, cs,a, cs,c) and z = (Φe,Φs,a,Φs,c, jn,a, jn,c, κ0,a, κ0,s, κ0,c, Ua, Uc), respec-
tively (states are assumed to be discretized). The parameter vector is θ = (D,Ds,a, Ds,c, ka, kc, p, Rf , t+).
We consider the cell voltage Vcell(t) and the electrolyte concentration in the separator core ce(`a + `s/2, t)

as the predicted response variable; we thus have y = (Vcell(t), ce(`a + `s/2, t)). The cell voltage Vcell(t)
is computed using the solid-phase potential on the right-hand side of the cathode Φs,c(`a + `s + `c, t)

and on the left-hand side of the anode Φs,a(0, t) as,

Vcell(t) = Φs,c(`a + `s + `c, t)− Φs,a(0, t) (4.17)

We also consider constant discharge current rates I (galvanostatic process) as the input or controls
u = I . The change of Vcell(t) for a discharge rate I is known as the voltage discharge curve. The cell
voltage Vcell(t) and the electrolyte concentration in the separator core ce(`a + `s/2, t) are assumed
to be measured at 100 (equally spaced) time points Ȳ = (Vcell(tk), ce(`a + `s/2, tk)), for tk ∈ T =

{1, · · · , 100}. The discharge curve at I1 is shown in Figure 2.
To investigate if information provided by discharge curves is sufficient to reliably estimate key

parameters of interest we analyze two different cases that we refer to as Case 1 and Case 2. Case 1 is
analyzed in detail to discuss the different techniques of our framework while Case 2 is presented in
summarized form. We use a third case (Case 3) to demonstrate that the use of electrolyte concentra-
tion information dramatically improves identifiability. We summarize the three cases as follows:

• Case 1 (base case): we consider one experiment that only uses discharge curve information (we
set I1 as the standard discharge rate). The only observable variable is assumed to be Vcell(·).

• Case 2: we consider the effect of progressively adding experiments with discharge curve infor-
mation (we set Ii, i = 2, . . . , 6). The only observable variable is assumed to be Vcell(·).

• Case 3: we consider the effect of progressively adding experiments with discharge curve infor-
mation and include the electrolyte concentration in the middle of the separator ce(`a + `s/2, ·)
as observable variable (we set Ii, i = 1, . . . , 4). The observable variables are Vcell(·) and
ce(·)|x=`a+`s/2.

We apply the sensitivity-based and Monte Carlo strategies of Section 2.2 to analyze parameters.
The results of Case 1 (base case), 2 and 3 are presented in Sections 4.1, 4.2, and 4.3, respectively. In
Table 2 we display the true parameter vector θ∗ taken from [12] and the initial guess vector θIG. In
all cases, the experimental data Ȳ is virtually generated by perturbing the model solution Y (u, θ∗) at
u and θ∗ under measurement error samples drawn from a normal distribution with mean zero and
variance σ2y = 1×10−4. In other words, Ȳ = Y (u, θ∗)+εwith ε ∼ N (0, σ2yI). To aid numerical stability,
the response variables and parameters are normalized. In Figure 2 we display the discharge curves
for Cases 1 and 2. The discharge rates I are expressed relative to the base current C = 17.5A/m2. We
thus have that I1 = 1C (base discharge), I2 = 2C, I3 = 3C, I4 = 4C (fast discharge), and I5 = 0.5C

and I6 = 0.1C (slow discharge). We assume a cut-off voltage of 2.8V .
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Figure 2: Discharge curves for base (I1 = 1C), fast (I2 = 2C, I3 = 3C, I4 = 4C), and slow rates
(I5 = 0.5C and I6 = 0.1C). Markers are experimental data and solid lines are model predictions after
parameter estimation (at estimator θ̂).

4.1 Case 1: Single Discharge Curve.

4.1.1 Sensitivity Method

The results of the sensitivity method discussed in Section 2.2.1 are summarized in Table 6. We present
the estimate θ̂ and their variances σ2jj (diagonal elements of C computed from (2.8)). The estimator
accuracy is measured in terms of the squared bias β(θ̂)2 computed from (2.15) and MSE computed
from (2.16). The model predictions at θ̂ are shown in Figure 2.

Estimator Analysis. Despite the good fitting exhibited in Figure 2, the estimated parameters have
large variances if only one discharge curve (I1) is used as experimental data. The most precise pa-
rameter is the Li+ ion diffusion coefficient in the solid particle of the anode Ds,a with a variance of
3.56×10−2 and the worst is the reaction rate constant in the anode ka with variance of 4.40×1015. The
precision of each parameter in terms of the length of their confidence intervals presented in (2.14) is
shown in Table 7. The lengths are computed as percentages relative to θ̄∗.

We now quantify the estimator accuracy in terms of its bias. The film resistance at the anode Rf
presents a bias of β(θ̂)2 = 4.65 × 10−3 which is equivalent to a relative bias of β(θ̂)/θ̄∗ = 10%. The
parameter ka exhibits the largest bias (β(θ̂)2 = 1.56× 107) equivalent to a relative bias of 5.92× 105%.
The overall performance metrics of this parameter estimator are 4.40 × 1015 for precision (related to
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Table 6: Case 1 for Sensitivity method.

Parameter
True
θ̄∗

Estimated
θ̂

Estimator Performance Identifiability analysis
(Parameter Ranking)Precision Accuracy

Variance
σ2

Bias
β(θ̂)2 MSE

Variance
Method

SVD
Method

QRP
Method

Ds,a 6.67× 10−1 2.54× 10−1 3.56× 10−2 1.70× 10−1 2.06× 10−1 (1)∗ (1) (2)∗

Ds,c 6.67× 10−1 9.13× 10−1 5.79× 10+2 6.07× 10−2 5.79× 10+2 (7) (7) (7)
D 6.67× 10−1 1.32× 10+0 1.48× 10+1 4.25× 10−1 1.52× 10+1 (5) (5) (5)
ka 6.67× 10−1 3.95× 10+3 4.40× 10+15 1.56× 10+7 4.40× 10+15 (8) (8) (8)
kc 6.67× 10−1 7.40× 10−1 3.84× 10+1 5.45× 10−3 3.85× 10+1 (6) (6) (6)
p 6.67× 10−1 7.93× 10−1 1.55× 10+0 1.59× 10−2 1.56× 10+0 (2) (2) (1)∗

Rf 6.67× 10−1 5.98× 10−1 6.13× 10+0 4.65× 10−3 6.13× 10+0 (3) (4) (4)
t+ 1.00× 10+0 2.92× 10−1 9.83× 10+0 5.01× 10−1 1.03× 10+1 (4) (3) (3)∗

Identifiable Subset Dimension 1 0 3

Table 7: Case 1, 2, and 3: Confidence interval lengths for Sensitivity and Monte Carlo methods.
Lengths are expressed as percentages relative to the true parameter.

Parameter
Sensitivity Method Monte Carlo Method

Case 1 Case 2 Case 1 Case 2 Case 3

SC1 SC4 SC6 SC1 SC4 SC6 SC1 SC4

Ds,a 1.1× 102% 5.3× 101% 6.1× 101% 6.0× 103% 1.9× 102% 1.6× 102% 4.6× 102% 5.8× 101%

Ds,c 1.4× 104% 5.5× 102% 3.6× 102% 8.7× 105% 1.3× 105% 9.3× 103% 2.4× 105% 1.4× 102%

D 2.3× 103% 2.3× 102% 2.2× 102% 8.4× 104% 1.7× 102% 8.2× 101% 6.0× 101% 2.4× 101%

ka 3.9× 1010% 2.2× 102% 1.5× 102% 1.4× 106% 1.4× 106% 9.3× 103% 4.4× 106% 8.7× 105%

kc 3.7× 103% 9.1× 102% 9.0× 102% 6.3× 105% 5.3× 102% 5.1× 102% 1.1× 102% 8.4× 101%

p 7.4× 102% 8.3× 101% 7.1× 101% 1.4× 102% 4.9× 101% 3.7× 101% 2.2× 101% 8.0× 100%

Rf 1.5× 103% 6.5× 101% 6.4× 101% 1.4× 102% 3.7× 101% 2.9× 101% 1.4× 102% 1.2× 101%

t+ 1.2× 103% 5.8× 101% 4.8× 101% 2.4× 102% 4.5× 101% 3.8× 101% 4.2× 101% 1.0× 101%

Tr [C]) and 1.56 × 107 for bias (as the squared norm of β(θ̂)). With these results we observe that the
estimator for Case 1 is highly unstable.

Ill-Conditioning Analysis. We now explore structural issues by applying the procedures of Section
2.4.1. This is based on the singular value analysis of the scaled sensitivity matrix S evaluated at the
parameter estimate θ̂. The singular values of S vary from ς1 = 9.1087×101 to ς8 = 1.5074×10−8. The
spectrum of the singular values SVs is the black-solid line with markers in Figure 3 (left panel). The
condition number and the collinearity index are κ = 6.0428× 109 and γ = 6.6341× 107, respectively.

On the left-hand side of Figure 3 we present lower bounds with respect to the condition number
and the collinearity index, εκ and εγ , respectively for Case 1. These values are computed by using the
predefined empirical upper bounds κmax = 1000 [21, 30, 29] and γmax = 15σy [6, 30, 29]. The bound
γmax is scaled by the measurement standard deviation σy because we consider the scaled sensitivity
matrix S = Σ−1

y ∇θY . We set ε = εγ = 6.67 × 100 as the lowest bound on the SVs to select the well-
conditioned singular values. For Case 1, only three singular values pass this test, which implies that S
has a numerical rank of three (rε = 3) and we have five ill-conditioned singular values.
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Figure 3: Singular value spectra. Left panel is Case 1 (single discharge curve) and right panel is Case
2 (multiple discharge curves).

Identifiability Analysis. We now apply the three different identifiability analysis methods (vari-
ance, SVD, and QRP) described in Section 2.4.2. We show the identifiable ranking list obtained for
each method in Table 6. The numbers in parenthesis indicate the position of each parameter in the
ranking and the stars indicate the identifiable parameters according to each method.

• Variance Method: under to this method the most identifiable parameter isDs,a (smallest variance
of σ2Ds,a = 3.56 × 10−2), and the less identifiable parameter is ka (largest variance of σ2ka =

4.40 × 1015). If we use a variance threshold of ρ = 1.5 × 10−1 [41] we have that only one
parameter is considered identifiable.

• SVD Method: under this method we find a similar ranking. In Figure 4 we present the contribu-
tion of each singular value to the variance of each parameter. We highlight the strong influence
of the ill-conditioned singular values (i.e., ςi for i = 4, · · · , 8) on the variance. These are re-
sponsible for the large variances observed in Table 6. We also see that the last two parameters
in the identifiable ranking list (Ds,c and ka) are fully influenced by the smallest singular val-
ues ς7 and ς8, respectively (proportions of 100%). The most identifiable parameter Ds,a exhibits
the smallest impact from the ill-conditioned singular values. The proportion, however, is still
significant (79.5%). In fact, if we use a proportion threshold πmax = 50% [4] to select the identi-
fiable parameters, this would indicate that we cannot classify Ds,a as an identifiable parameter.
Accordingly, all parameters would be considered unidentifiable. In Table 6 we thus present a param-
eter subset dimension equal to zero. From Figure 4 it also becomes evident that the smallest
singular values ςi for i = 4, · · · , 8 simultaneously affect many parameters. This is an indication
of linear dependence.

• QR Method: under this method we find that the parameter with the most effect on the outputs
is the Bruggman coefficient p. Consequently, in Table 6 we put this parameter on the first place
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of the ranking. The reaction rate constant in the anode ka is the last in the ranking. This means
that, after all orthogonal projections, this parameter has the smallest effect on the measured
variables. In order to select the number of the identifiable parameters, we use rε = 3 such
that the identifiable parameter subset dimension is 3. Under this threshold, we obtain that
parameters p, Ds,a and t+ are identifiable.
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Figure 4: Case 1: Variance decomposition for SVD identifiability method of Section 2.4.2.

From previous results we can establish several conclusions. First, the three methods indicate
that we cannot identify the whole parameter vector using one discharge curve. This is because the
discharge signal u = I1 does not excite enough the system and this is manifested as ill-conditioning
of the sensitivity matrix S. This is reinforced by Figure 5, where we present the sensitivity time
profiles of the voltage to the different parameters. As can be seen, the measured variable Vcell is not
significantly excited by several parameters (several time profiles are flat and close to zero). We thus
find insensitive parameters (e.g., ka, Ds,c and kc) which can take any value in a broad space without
affecting the output. We can also conclude that parameter variability and identifiability issues are
closely related to the ill-conditioning of the sensitivity matrix S. Accordingly, any improvement in the
ill-conditioning of S will have a beneficial impact in parameter variances, confidence intervals and
identifiability. This can be achieved by providing alternative discharge signals that more properly
excite the system.

4.1.2 Monte Carlo Method

The sensitivity method provides several indications of poor identifiability. In this section, we use
the Monte Carlo method described in Section 2.2.2 to validate these observations. We use L = 200
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Figure 5: Sensitivity time profiles of cell voltage with respect to parameters dVcell(t)/dθ at nominal
discharge rate I1 for Case 1.

replications and use the measurement variances σ2y = 1× 10−4 to obtain the data sets Ȳj . The results
are summarized in Table 8. We present the empirical mean θ̂ and the parameter variance σ2kk as
the diagonal elements of the approximate matrix C. We also present the accuracy performance in
terms of the squared bias β(θ̂)2 and the MSE. The marginal probability density function (pdf ) for
each parameter are displayed in Figure 6.

Table 8: Case 1: Summary of results for Monte Carlo.

Parameter
θ

True
θ̄∗

Mean
θ̂

Estimator Performance
Identifiability Analysis
(Parameter Ranking)Precision Accuracy

Variance
σ2

Bias
β(θ̂)2 MSE Variance Method

Ds,a 6.67× 10−1 2.14× 10+0 1.01× 10+2 2.16× 10+0 1.03× 10+2 (4)

Ds,c 6.67× 10−1 2.24× 10+2 2.12× 10+6 5.00× 10+4 2.17× 10+6 (7)

D 6.67× 10−1 1.24× 10+1 1.98× 10+4 1.38× 10+2 1.99× 10+4 (5)

ka 6.67× 10−1 6.91× 10+2 5.42× 10+6 4.76× 10+5 4.40× 10+6 (8)

kc 6.67× 10−1 1.04× 10+2 1.13× 10+6 1.07× 10+4 1.14× 10+6 (6)

p 6.67× 10−1 6.97× 10−1 5.77× 10−2 9.48× 10−4 5.86× 10−2 (2)∗

Rf 6.67× 10−1 6.30× 10−1 5.55× 10−2 1.37× 10−3 5.69× 10−2 (1)∗

t+ 1.00× 10+0 8.92× 10−1 3.74× 10−1 1.17× 10−2 3.86× 10−1 (3)

Performance metric 8.68× 106 5.37× 105 9.22× 106 −

Identifiable Subset Dimension 2

Estimator Analysis. From Table 8 we observe that variances do not match those obtained with the
sensitivity method presented in Table 6. This provides evidence that the variances obtained from
the Fisher-information matrix are badly approximated. From Table 8 we also see that parameters
Ds,a, Ds,c, D, ka and kc have large variances while parameters p, Rf and t+ have small ones. This
becomes more evident when observing the relative confidence interval lengths presented in Table
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7. According to the Monte Carlo method, the most precise parameters are the film resistance at the
anode Rf (σ2Rf = 5.55×10−2) and the Bruggman coefficient p (σ2p = 5.77×10−2). The relative lengths
of the confidence intervals for Rf and p, however, are quite large (140% and 143%, respectively).
The most uncertain parameter is ka with a variance of σ2ka = 5.42 × 106 and a relative length of the
confidence interval of 1.38× 106%.

In terms of estimator accuracy, we see that the mean θ̂ presents a deviation from θ̄∗ for param-
eters Ds,a, Ds,c, D and kc larger than that exhibited by the parameter estimate θ̂ obtained with the
sensitivity method and presented in Table 6. This is a reflection of the instability of the parameters.
Parameter ka is the most biased parameter obtained by Monte Carlo. The most precise parameters
p, Rf and t+ are also the least biased parameters. This ranking is very close to that obtained with the
variance, SVD, and QRP methods of the sensitivity setting.

From Figure 6 we can clearly observe that only parameters p, Rf and t+ are identifiable and their
distribution are close to normal. With these results we confirm that the parameter estimator obtained
in Case 1 is unstable.

Figure 6: Case 1: Marginal pdfs obtained from Monte Carlo. Solid-black lines and filled regions
represent the normal and the non-parametric distributions of each estimator, respectively. Parameters
with a star are nominated as identifiable.

Identifiability Analysis. We now apply the variance method of Section 2.4.2 to analyze identifi-
ability under Monte Carlo. Under the variance threshold ρ = 1.5 × 10−1 we find two identifiable
parameters, Rf and p. We thus have a identifiable parameter subset dimension equal two, as indi-
cated in Table 8. From this table we also see that the most identifiable parameter is Rf with variance
σ2Rf = 5.55 × 10−2 and the less identifiable parameter is ka with variance σ2ka = 5.42 × 106. This is
partially consistent with the identifiability results of the sensitivity method.
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4.2 Case 2: Multiple Discharge Curves.

From Case 1 we can conclude that only a very small parameter subset is identifiable. In particular,
our analysis indicates that parameters Rf , p and t+ are the only identifiable parameters. Their vari-
ances, however, are large. We now analyze the effect of incorporating additional discharge curves.
We progressively add new curves obtained at different discharge rates (I2 = 2I1, I3 = 3I1, I4 =

4I1, I5 = 0.5I1 and I6 = 0.1I1). The first scenario (denoted as SC1) uses signal u1 = I1 and data
Ȳ1 = V 1

cell(tk) (this corresponds to Case 1). Scenario SC2 uses the signal vector u2 = (I1, I2) and data
Ȳ2 = (V 1

cell(tk), V
2
cell(tk)) and we continue until scenario SC6 with signal vector u6 = (I1, I2, . . . , I6)

and data Ȳ6 = (V 1
cell(tk), V

2
cell(tk), · · · , V 6

cell(tk)).

4.2.1 Sensitivity Method.

We conduct estimation for each scenario SC1, ..., SC6 to obtain the estimates θ̂ξ, the model prediction
vector Yξ and its corresponding scaled sensitivity matrix Sξ. We then analyze the estimator perfor-
mance for each scenario based on its average estimated covariance matrix Cξ, confidence intervals,
and bias β(θ̂ξ).

Estimator Analysis. In Table 7 we show the confidence interval lengths in relative terms. We clearly
see that the addition of experimental information reduces the confidence levels. The main reduction
is observed when four experiments (SC4) are used. Interestingly, considering two additional ex-
periments (SC6) only provides a slight improvement over SC4. Moreover, despite the reduction in
parameter variance over Case 1, we observe that the parameters still have large uncertainties. For
instance, for scenario SC6, we have thatD,Ds,c and kc have interval lengths of 216%, 365% and 902%,
respectively.

Considering the large parameter variability we can conclude that information from discharge
curves does not seem sufficient to completely identify the parameter vector. These results also seem
to indicate that slow discharge rates I5, I6 are not informative. We corroborated this last observation by
analyzing the sensitivity profiles for different rates. In Figure 7 we present the sensitivity profiles
for the cell voltage Vcell to the parameters for the discharge rates I1 (standard discharge), I4 (fast
discharge), and I6 (slow discharge). We observe that the slow discharge rate I6 provides significantly
less excitation compared to I1 and I4. In addition, it is interesting to observe that the fast discharge
rate I4 induces richer dynamic behavior (this is particularly evident from the profiles of the Bruggman
coefficient and of the diffusion coefficients).

Ill-Conditioning Analysis. We now evaluate changes in ill-conditioning as we add discharge curves.
The results are presented in the right panel of Figure 3. We can observe the lifting in the singular
value spectrum with each scenario. This lifting is accompanied by a reduction in the spectrum slope
(related to the condition number κ) and an increase in the smallest singular value ς8 (related to the
collinearity index γ) . In particular, we have condition numbers for SC4 and SC6 of 6.668 × 102 and
6.024× 102, respectively and collinearity indexes of 1.564× 100 and 1.395× 100. The spectra and the
ill-conditioning metrics (κ and γ) demonstrate a significant improvement in the ill-conditioning from
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Figure 7: Sensitivity time profiles of cell voltage with respect to parameters dVcell(t)/dθ at slow I6,
nominal I1, and fast I4 discharge rates for scenario Case 2-SC6.

SC1 to SC4 but just a slight improvement of SC6 with respect to SC4. In Figure 3 we also see that the
number of well-conditioned singular values is not the full length of the parameter vector. In other
words, matrix S has a rank equal to five only (rε=5).

Identifiability Analysis. In Table 9 we present the subset dimension of the identifiable parameters
after applying the three methods of Section 2.4.2. We use the same thresholds of Section 2.3.1 for
Case 1. The variance method selects two and six parameters as identifiable for scenarios SC2 and
SC6, respectively. This is the result of the progressive reduction of the parameter variance. For
SC4 and SC6 the identifiable parameters are Ds,a, kc, p, Rf and t+. Parameters Ds,c and ka remain
unidentifiable in all scenarios. The QRP method only selects 5 parameters as identifiable for scenario
SC6 while the SVD method only selects one.

Table 9: Case 2: Summary of results for Sensitivity and Monte Carlo methods.

Input action
uξ

Experimental data
Y mξ

Identifiable Subset Dimension

SCξ New Iξ

Sensitivity Method
Monte Carlo

Method
Variance
Method

SVD
Method

QR
Method

Variance
Method

1 1.0 C = 17.5 [I1] [V 1
cell] 1 0 3 2

2 2.0 C = 35.0 [I1, I2] [V 1
cell, V

2
cell] 2 1 4 3

3 3.0 C = 52.5 [I1, I2, I3] [V 1
cell, V

2
cell, V

3
cell] 3 1 5 4

4 4.0 C = 70.0 [I1, I2, I3, I4] [V 1
cell, V

2
cell, V

3
cell, V

4
cell] 5 1 5 5

5 0.5 C = 8.75 [I1, I2, I3, I4, I5] [V 1
cell, V

2
cell, V

3
cell, V

4
cell, V

5
cell] 6 1 5 5

6 0.1 C = 1.75 [I1, I2, I3, I4, I5, I6] [V 1
cell, V

2
cell, V

3
cell, V

4
cell, V

5
cell, V

6
cell] 6 1 5 5
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4.2.2 Monte Carlo Method.

The variances obtained with Monte Carlo are again several orders of magnitude different than those
estimated with the sensitivity method. This is illustrated in Table 7. We can also observe that, because
ill-conditioning is improved as we add experimental information, the qualitative behavior of both
methods becomes similar. From Table 7 we confirm that the most precise parameters predicted by
Monte Carlo are p, Rf and t+ and a total of five parameters are considered identifiable for SC4, SC5,
and SC6. This is consistent with the variance and QRP methods under the sensitivity setting. This
again suggests that the sensitivity method can qualitatively diagnose variance behavior. Parameters
Ds,c, ka and kc remain with large variance and are unidentifiable.

In Figure 8 we present the marginal probability density functions (pdfs) for scenarios SC4 and
SC6. By comparing these pdfs with the pdfs of SC1 (Case 1) in Figure 6 we clearly see an improve-
ment in the stability of the estimates. From Figure 8 we observe that there is no noticeable difference
in the pdfs of scenarios SC4 and SC6 for the most precise parameters p, Rf and t+. This indicates
that, even if the spectrum of singular values does not improve from SC4 to SC6 (as suggested by the
sensitivity method), there is additional information provided by the discharge rates I5 and I6. This
information, however, is still insufficient to determine the rest of the parameters (particularly ka, kc,
and Ds,c) which still present large variances.

(a) (b)

Figure 8: Case 2: Marginal pdfs for parameters obtained with Monte Carlo analysis for scenarios
Case 2-SC4 (left) and Case 2-SC6 (right).

4.3 Case 3: Discharge curves and electrolyte concentration profile.

In Case 3 we considers two observable variables: Vcell(t) and the electrolyte concentration in the mid-
dle of the separator ce(x, t)|x=`a+`s/2. We consider scenarios SC1, SC2, SC3, and SC4 that progres-
sively consider the addition of new experimental information but this time each experiment measures
the two outputs. Accordingly, we obtain SC1 and SC4 by collecting the experiments at u1 = I1 and
u4 = (I1, . . . , I4), respectively. For consistency, we use the same discharge rates of Case 1 and Case 2.
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Figure 9: Case 3: Voltage and electrolyte concentration profile at separator for scenario Case 3-SC1.

In Figure 9, we display model fitting for both variables after solving the parameter estimation
for SC1. We highlight the nonlinear response of the concentration profile. In Figure 10 we display
the singular value spectra for all considered scenarios. We found a considerable large lift in the
spectrum even when only one experiment is used (Case 3-SC1 compared to Case 1). The form of the
new spectrum defines five singular values as well-conditioned compared to three in Case 1. A small
singular value of ς8 = 9.6113 × 10−9, however, is still observed for Case 3-SC1. This small singular
value makes the condition number large (κ = 6.2796 × 1010) and the collinearity index large as well
(γ = 1.0404× 108). When more experiments are added (Case 3-SC2 to Case 3-SC4) the conditioning
becomes better with an extra lifting in the spectra and larger values for ς8. In Case 3-SC4 we observe
seven well-conditioned singular values compared to the five in Case 2-SC4. The effect of adding
electrolyte concentration information is thus highly beneficial from an ill-conditioning stand-point.

In Figures 11 and 12 we further illustrate that the improvement in the ill-conditioning is associated
with the information supplied by the new observable variable. By comparing the figures we see that
the cell voltage is excited in similar ways for currents I1 and I4 while this is not the case for the electrolyte
concentration. In particular, the electrolyte concentration presents rich and different dynamic responses at
fast and slow rates which aids the identification of parameters. From Figure 12 we also observe that the
electrolyte concentration at the separator core ce(`a+`s/2, t) is highly excited by parametersD, p and
t+. Parameters Ds,c and kc also provide more excitation in comparison with Cases 1 and 2 (we recall
that Ds,c and kc remain unidentifiable in Case 2).

We further validate our observations for Case 3 using Monte Carlo. In Table 7 we present confi-
dence interval lengths and in Figure 13 we present the pdfs for each parameter for scenarios SC1 and
SC4. We observe an important reduction in the confidence intervals compared to Case 2 presented
in Table 7. In particular, parameters Ds,c and kc have large variances and are unidentifiable in Case
2-SC4 while these parameters become identifiable in Case 3-SC4. These results confirm observations
obtained from the sensitivity analysis presented in Figures 11 and 12. We can also conclude that
voltage and electrolyte concentration at a single location is sufficient to reliably identify 90% of the
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Figure 10: Case 3: Spectrum of singular values under different scenarios.
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Figure 11: Sensitivity time profiles of cell voltage with respect to parameters dVcell(t)/dθ at nominal
I1 and fast I4 discharge rates for scenario Case 3-SC4.

parameters.
An intriguing finding of our study is that the anode reaction constant ka remains highly unstable,

despite the addition of electrolyte concentration information. This is particularly evident from the
marginal pdfs presented in Figure 11. This is also confirmed by the spectrum analysis which gives
only seven well-conditioned singular values. From the sensitivity profiles we can see that this param-
eter indeed excites the output variables. This, however, does not seem sufficient to reliably estimate
the parameter. This situation can be explained from the observations made by Ramadesigan, et.al.,
[37]; who note that very strong variations (orders of magnitude) of the anode reaction constant are
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Figure 12: Sensitivity time profiles of electrolyte concentration in the separator with respect to pa-
rameters dce(`a + `s/2, t)/dθ at nominal I1 and fast I4 discharge rates for scenario Case 3-SC4.

needed to have an impact on the voltage curve. Our results indicate that, at its nominal value, this
parameter has little influence on the discharge curve. It is possible, however, that around another
nominal point such insensitivity disappears. We will explore this issue in future work.

(a) (b)

Figure 13: Case 3: Marginal pdfs for scenarios Case 3-SC1 (left) and Case 3-SC4 (right).

4.4 Computational Issues

The PDAE system is implemented in Matlab and is discretized by using 11 points in the axial direc-
tion for each region and 11 points for the radial direction. We use the discretization routines dss010
and dss044 as in [34]. The resulting DAE system contains 561 equations and is solved by using the
integrator IDAS from SUNDIALS which provides forward and adjoint sensitivity analysis capabil-
ities [22]. The parameter estimation problems are solved using the nonlinear least-squares routine
lsqnonlin of Matlab (we use the trust region reflective algorithm). All results were obtained on a
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Intel (R) Core(TM) i7-4770K CPU running at 3.50GHz and with 32.0 GB of available RAM memory.
The computational results are summarized in Table 10. The average simulation time was in the

range of 3-7 seconds except for the slow discharge rate which required 48 seconds. This is because
the slow discharge rate requires a long integration time to reach the cut-off voltage. The number of
iterations required to solve the parameter estimation problems is decreased as we add experimental
information because the problem becomes better conditioned and the optimization algorithm can
more easily identify a solution. The only exception is instance Case 2-SC6, which increases the num-
ber of iterations. We attribute this to the lack of information introduced by scenario SC6 at slow
discharge rates. The solution times for Case 2 are longer than those of Case 3 because the latter
requires the computation of additional sensitivity information. A Monte Carlo procedure with 200
replications for Case 3-SC4 currently requires around two days to complete. We note, however, that
these replications can be performed in parallel and can potentially reduce the time down to fifteen
minutes. In addition, simulations for estimation problems with multiple experiments can also be
performed in parallel. For Case 3-SC4 this could reduce the time to four minutes. Parallel parameter
estimation approaches have been proposed in [13, 52]. We will also investigate the use of reduced
models, as those proposed in [37].

Table 10: Computational results for simulation and parameter estimation problems.

Simulation Estimation
Discharge Rate Time [seconds] Instance Time [seconds] Iterations

1.0 C 6.1 Case 2-SC1 476.6 73
2.0 C 5.4 Case 2-SC2 711.8 54
3.0 C 4.3 Case 2-SC3 520.6 31
4.0 C 3.6 Case 2-SC4 343.6 18
0.5 C 6.6 Case 2-SC6 3751.8 32
0.1 C 48.1 Case 3-SC1 388.8 70

Case 3-SC2 664.0 57
Case 3-SC4 915.2 47

5 Conclusions and Future Work

We have presented a computational framework that combines sensitivity and Monte Carlo to eval-
uate quality of parameter estimates and diagnose ill-conditioning and identifiability issues. Our
analysis indicates that voltage profile information collected from discharge experiments only enables
the estimation of a small parameter subset. The incorporation of electrolyte concentration profiles at
a single axial point is sufficient to estimate seven of eight parameters: the Li+ diffusion coefficient
in the solid particle of anode, the Li+ diffusion coefficient in the solid particle of cathode, the salt
diffusion coefficient in the electrolyte, the reaction rate constant in the cathode, the Bruggman coeffi-
cient, the film resistance at the anode, and the transport number. The only unidentifiable parameter
is the reaction rate constant in the anode. We demonstrate that sensitivity methods can qualitative
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identify unidentifiable parameters using only structural information of the sensitivity matrix. This
provides an advantage over the most rigorous but also more expensive Monte Carlo method. As part
of future work, we will use our framework to investigate impacts of other sources of experimental
information on identifiability and ill-conditioning. We will also develop an implementation tailored
to high-performance computing architectures to accelerate analysis times.
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